ArcFace: Additive Angular Margin Loss for Deep Face Recognition

نویسندگان

  • Jiankang Deng
  • Jia Guo
  • Stefanos Zafeiriou
چکیده

Convolutional neural networks have significantly boosted the performance of face recognition in recent years due to its high capacity in learning discriminative features. To enhance the discriminative power of the Softmax loss, multiplicative angular margin [23] and additive cosine margin [44, 43] incorporate angular margin and cosine margin into the loss functions, respectively. In this paper, we propose a novel supervisor signal, additive angular margin (ArcFace), which has a better geometrical interpretation than supervision signals proposed so far. Specifically, the proposed ArcFace cos(θ + m) directly maximise decision boundary in angular (arc) space based on the L2 normalised weights and features. Compared to multiplicative angular margin cos(mθ) and additive cosine margin cos θ−m, ArcFace can obtain more discriminative deep features. We also emphasise the importance of network settings and data refinement in the problem of deep face recognition. Extensive experiments on several relevant face recognition benchmarks, LFW, CFP and AgeDB, prove the effectiveness of the proposed ArcFace. Most importantly, we get state-of-art performance in the MegaFace Challenge in a totally reproducible way. We make data, models and training/test code public available 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Additive Margin Softmax for Face Verification

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order...

متن کامل

CosFace: Large Margin Cosine Loss for Deep Face Recognition

Face recognition has made extraordinary progress owing to the advancement of deep convolutional neural networks (CNNs). The central task of face recognition, including face verification and identification, involves face feature discrimination. However, the traditional softmax loss of deep CNNs usually lacks the power of discrimination. To address this problem, recently several loss functions su...

متن کامل

Deep Joint Face Hallucination and Recognition

Deep models have achieved impressive performance for face hallucination tasks. However, we observe that directly feeding the hallucinated facial images into recognition models can even degrade the recognition performance despite the much better visualization quality. In this paper, we address this problem by jointly learning a deep model for two tasks, i.e. face hallucination and recognition. I...

متن کامل

Exponential Discriminative Metric Embedding in Deep Learning

With the remarkable success achieved by the Convolutional Neural Networks (CNNs) in object recognition recently, deep learning is being widely used in the computer vision community. Deep Metric Learning (DML), integrating deep learning with conventional metric learning, has set new records in many fields, especially in classification task. In this paper, we propose a replicable DML method, call...

متن کامل

Face Recognition via Centralized Coordinate Learning

Owe to the rapid development of deep neural network (DNN) techniques and the emergence of large scale face databases, face recognition has achieved a great success in recent years. During the training process of DNN, the face features and classification vectors to be learned will interact with each other, while the distribution of face features will largely affect the convergence status of netw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.07698  شماره 

صفحات  -

تاریخ انتشار 2018